Top 1K Features Creators Events Podcasts Books Extensions Interviews Blog Explorer CSV

Literate Agda

< >

Literate Agda is a programming language created in 2009.

#2175on PLDB 15Years Old 2kRepos


Example from the web:
\documentclass{article} % The following packages are needed because unicode % is translated (using the next set of packages) to % latex commands. You may need more packages if you % use more unicode characters: \usepackage{amssymb} \usepackage{bbm} \usepackage[greek,english]{babel} % This handles the translation of unicode to latex: \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{autofe} % Some characters that are not automatically defined % (you figure out by the latex compilation errors you get), % and you need to define: \DeclareUnicodeCharacter{8988}{\ensuremath{\ulcorner}} \DeclareUnicodeCharacter{8989}{\ensuremath{\urcorner}} \DeclareUnicodeCharacter{8803}{\ensuremath{\overline{\equiv}}} % Add more as you need them (shouldn’t happen often). % Using “\newenvironment” to redefine verbatim to % be called “code” doesn’t always work properly. % You can more reliably use: \usepackage{fancyvrb} \DefineVerbatimEnvironment {code}{Verbatim} {} % Add fancy options here if you like. \begin{document} \begin{code} module NatCat where open import Relation.Binary.PropositionalEquality -- If you can show that a relation only ever has one inhabitant -- you get the category laws for free module EasyCategory (obj : Set) (_⟶_ : obj → obj → Set) (_∘_ : ∀ {x y z} → x ⟶ y → y ⟶ z → x ⟶ z) (id : ∀ x → x ⟶ x) (single-inhabitant : (x y : obj) (r s : x ⟶ y) → r ≡ s) where idʳ : ∀ x y (r : x ⟶ y) → r ∘ id y ≡ r idʳ x y r = single-inhabitant x y (r ∘ id y) r idˡ : ∀ x y (r : x ⟶ y) → id x ∘ r ≡ r idˡ x y r = single-inhabitant x y (id x ∘ r) r ∘-assoc : ∀ w x y z (r : w ⟶ x) (s : x ⟶ y) (t : y ⟶ z) → (r ∘ s) ∘ t ≡ r ∘ (s ∘ t) ∘-assoc w x y z r s t = single-inhabitant w z ((r ∘ s) ∘ t) (r ∘ (s ∘ t)) open import Data.Nat same : (x y : ℕ) (r s : x ≤ y) → r ≡ s same .0 y z≤n z≤n = refl same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s) ≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z ≤-trans .0 y z z≤n s = z≤n ≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s) ≤-refl : ∀ x → x ≤ x ≤-refl zero = z≤n ≤-refl (suc x) = s≤s (≤-refl x) module Nat-EasyCategory = EasyCategory ℕ _≤_ (λ {x}{y}{z} → ≤-trans x y z) ≤-refl same \end{code} \end{document}

Language features

Feature Supported Example Token
Comments -- A comment
Line Comments -- A comment --
Semantic Indentation X
View source
- Build the next great programming language · About · Keywords · Resources · Acknowledgements · Part of the World Wide Scroll