Literate Agda is a programming language created in 2009.
#2203on PLDB | 16Years Old | 2kRepos |
\documentclass{article}
% The following packages are needed because unicode
% is translated (using the next set of packages) to
% latex commands. You may need more packages if you
% use more unicode characters:
\usepackage{amssymb}
\usepackage{bbm}
\usepackage[greek,english]{babel}
% This handles the translation of unicode to latex:
\usepackage{ucs}
\usepackage[utf8x]{inputenc}
\usepackage{autofe}
% Some characters that are not automatically defined
% (you figure out by the latex compilation errors you get),
% and you need to define:
\DeclareUnicodeCharacter{8988}{\ensuremath{\ulcorner}}
\DeclareUnicodeCharacter{8989}{\ensuremath{\urcorner}}
\DeclareUnicodeCharacter{8803}{\ensuremath{\overline{\equiv}}}
% Add more as you need them (shouldn’t happen often).
% Using “\newenvironment” to redefine verbatim to
% be called “code” doesn’t always work properly.
% You can more reliably use:
\usepackage{fancyvrb}
\DefineVerbatimEnvironment
{code}{Verbatim}
{} % Add fancy options here if you like.
\begin{document}
\begin{code}
module NatCat where
open import Relation.Binary.PropositionalEquality
-- If you can show that a relation only ever has one inhabitant
-- you get the category laws for free
module
EasyCategory
(obj : Set)
(_⟶_ : obj → obj → Set)
(_∘_ : ∀ {x y z} → x ⟶ y → y ⟶ z → x ⟶ z)
(id : ∀ x → x ⟶ x)
(single-inhabitant : (x y : obj) (r s : x ⟶ y) → r ≡ s)
where
idʳ : ∀ x y (r : x ⟶ y) → r ∘ id y ≡ r
idʳ x y r = single-inhabitant x y (r ∘ id y) r
idˡ : ∀ x y (r : x ⟶ y) → id x ∘ r ≡ r
idˡ x y r = single-inhabitant x y (id x ∘ r) r
∘-assoc : ∀ w x y z (r : w ⟶ x) (s : x ⟶ y) (t : y ⟶ z) → (r ∘ s) ∘ t ≡ r ∘ (s ∘ t)
∘-assoc w x y z r s t = single-inhabitant w z ((r ∘ s) ∘ t) (r ∘ (s ∘ t))
open import Data.Nat
same : (x y : ℕ) (r s : x ≤ y) → r ≡ s
same .0 y z≤n z≤n = refl
same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s)
≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z
≤-trans .0 y z z≤n s = z≤n
≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s)
≤-refl : ∀ x → x ≤ x
≤-refl zero = z≤n
≤-refl (suc x) = s≤s (≤-refl x)
module Nat-EasyCategory = EasyCategory ℕ _≤_ (λ {x}{y}{z} → ≤-trans x y z) ≤-refl same
\end{code}
\end{document}
Feature | Supported | Example | Token |
---|---|---|---|
Comments | ✓ | -- A comment | |
Line Comments | ✓ | -- A comment | -- |
Semantic Indentation | X |