../code/conceptPage.scroll id balanced-ternary-notation name Balanced ternary appeared 1544 tags notation wikipedia https://en.wikipedia.org/wiki/Balanced_ternary summary Balanced ternary is a non-standard positional numeral system (a balanced form), used in some early computers and useful in the solution of balance puzzles. It is a ternary (base 3) number system in which the digits have the values –1, 0, and 1, in contrast to the standard (unbalanced) ternary system, in which digits have values 0, 1 and 2. Balanced ternary can represent all integers without using a separate minus sign; the value of the leading non-zero digit of a number has the sign of the number itself. While binary numerals with digits 0 and 1 provide the simplest positional numeral system for natural numbers (or for positive integers if using 1 and 2 as the digits), balanced ternary provides the simplest self-contained positional numeral system for integers. Different sources use different glyphs used to represent the three digits in balanced ternary. In this article, T (which resembles a ligature of the minus sign and 1) represents −1, while 0 and 1 represent themselves. Other conventions include using '−' and '+' to represent −1 and 1 respectively, or using Greek letter theta (Θ), which resembles a minus sign in a circle, to represent −1. In publications about the Setun computer, −1 is represented as overturned 1: "1".Balanced ternary makes an early appearance in Michael Stifel's book Arithmetica Integra (1544). It also occurs in the works of Johannes Kepler and Léon Lalanne. Related signed-digit schemes in other bases have been discussed by John Colson, John Leslie, Augustin-Louis Cauchy, and possibly even the ancient Indian Vedas. backlinksCount 160 pageId 376757 dailyPageViews 72 appeared 1963